CALR Mutation
- Also Known As:
- CALR Gene Mutation Exon 9
- Formal Name:
- Calreticulin Mutation Analysis (myeloproliferative neoplasm)

This page was fact checked by our expert Medical Review Board for accuracy and objectivity. Read more about our editorial policy and review process.
.At a Glance
Why Get Tested?
To help diagnose bone marrow disorders known as myeloproliferative neoplasms (MPNs), in which the bone marrow produces too many of one or more types of blood cells
When To Get Tested?
When you have abnormal results on a complete blood count (CBC) and your health care practitioner suspects that you may have a bone marrow disorder, especially essential thrombocythemia (ET) or primary myelofibrosis (PMF)
Sample Required?
A blood sample is obtained by inserting a needle into a vein in the arm. Sometimes a bone marrow aspiration and biopsy may be done to collect a sample for testing.
Test Preparation Needed?
None
What is being tested?
The calreticulin gene, called CALR for short, is responsible for making a protein called calreticulin. The exact function of calreticulin protein remains largely unknown, but it is likely involved in ensuring the correct folding of new proteins, maintaining correct calcium levels in cells, and a number of other cell functions. Mutations of the CALR gene are associated with bone marrow neoplasms that cause the production of too many blood cells. These blood disorders are collectively known as myeloproliferative neoplasms (MPNs). The CALR mutation test looks for abnormalities in the CALR gene to help diagnose and classify MPNs.
The MPNs most commonly associated with CALR mutations are:
- Essential thrombocythemia (ET)—there are too many platelet-producing cells (megakaryocytes) in the bone marrow
- Primary myelofibrosis (PMF), also known as chronic idiopathic myelofibrosis or agnogenic myeloid metaplasia—there are too many platelet-producing cells and cells that produce scar tissue in the bone marrow
CALR mutations are the second most common genetic abnormality (after JAK2 mutations) associated with essential thrombocythemia or primary myelofibrosis. They are present in about 20-25% of adults with ET and 25-30% of adults with PMF. Although rare and not well understood in children, 50% of pediatric PMF patients had CALR mutations.
The CALR mutation is acquired after birth as opposed to inherited. It is caused by the addition or removal of small amounts of genetic material to a region of the gene called exon 9. This leads to an abnormal calreticulin protein. It is not yet understood how the mutant protein leads to signs and symptoms of MPN. While more than 50 types of CALR mutation have been found, only the two most common variants associated with MPNs are included in conventional PCR testing. Next generation sequencing (NGS)-based analysis should detect all mutation variants but is not widely available.
In addition to helping diagnose MPNs, CALR mutation testing can provide information about a person’s prognosis. Studies have shown that compared to individuals with the JAK2 mutation, those with the CALR mutation had a milder disease course, fewer signs and symptoms of blood clotting (thrombotic episodes), and better survival.
Common Questions
Related Content
View Sources
CALR mutation detection. Cleveland Clinic Laboratories. Available online at http://clevelandcliniclabs.com/wp-content/assets/pdfs/technical-briefs/calr-89979.pdf. Accessed March 2017.
Example patient report, CALR (calreticulin) exon 9 mutation analysis by PCR. ARUP Laboratories. Available online at http://ltd.aruplab.com/Tests/DownloadReport/2010673%2C%20Not%20Detected.pdf. Accessed March 2017.
Hematological malignancies, Thrombocytosis panel. Knight Diagnostic Laboratories. Available online at https://www.ohsu.edu/custom/knight-diagnostic-labs/home/test-details?id=Thrombocytosis+Panel. Accessed March 2017.
Nangalia, J. and Green, T. R. (2014 December 5). ASH Education Book. The evolving genomic landscape of myeloproliferative neoplasms. Available online at http://asheducationbook.hematologylibrary.org/content/2014/1/287.full. Accessed March 2017.
(© 1995-2017). CALR mutation analysis, myeloproliferative neoplasm (MPN). Mayo Medical Laboratories. Available online at http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/62912. Accessed March 2017.
Williams, M.E. (2014 January 7). CALR mutation in myeloproliferative diseases. NEJM Journal Watch. Available online at http://www.jwatch.org/na33026/2014/01/07/calr-mutation-myeloproliferative-disorders. Accessed March 2017.
(2014 January 7). NeoGenomics is the First Laboratory to Offer Calreticulin (CALR) Mutation Testing for the Diagnosis and Classification of Myeloproliferative Neoplasms. PR Newswire. Available online at http://www.prnewswire.com/news-releases/neogenomics-is-the-first-laboratory-to-offer-calreticulin-calr-mutation-testing-for-the-diagnosis-and-classification-of-myeloproliferative-neoplasms-239029251.html. Accessed March 2017.
Mehrotra, M. et al. (2015). Clinical validation of a multipurpose assay for detection and genotyping of CALR mutations in myeloproliferative neoplasms. American Journal of Clinical Pathology. Available online at http://www.medscape.com/viewarticle/855480_4. Accessed March 2017.
Gotlib, J. (2015 January 8). Mutation of the Calreticulin (CALR) Gene in Myeloproliferative Neoplasms. The Hematologist. Available online at http://www.hematology.org/Thehematologist/Years-Best/3546.aspx. Accessed March 2017.
Wu, Z. et al. (2015 February). Clinical relevance between CALR mutation and myeloproliferative neoplasms. Stem Cell Investigation. Available online at http://sci.amegroups.com/article/view/5719/6523. Accessed March 2017.
(2015 August). Myeloproliferative neoplasm: A diagnostic approach to peripheral blood evaluation. Mayo Clinic Mayo Medical Laboratories. Available online at http://www.mayomedicallaboratories.com/it-mmfiles/Myeloproliferative_Neoplasm_A_Diagnostic_Approach_to_Peripheral_Blood_Evaluation.pdf. Accessed March 2017.
Pietra, D. et al. (2015 November 17). Chronic myeloproliferative neoplasms, Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. Available online at http://www.nature.com/leu/journal/v30/n2/full/leu2015277a.html. Accessed March 2017.
(2015 December 11). 2015 Blood Journal reports that CALR mutation reduced with Pegasys. MPN Research Foundation. Available online at http://www.mpnresearchfoundation.org/2015-Blood-Journal-Reports-that-CALR-Mutation-Reduced-with-Pegasys. Accessed March 2017.
Arber, D.A. et al. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. Available online at http://www.bloodjournal.org/content/127/20/2391?sso-checked=true. Accessed March 2017.
(© 2016). CALR mutation analysis. University of Texas MD Anderson Cancer Center. Available online at https://www.mdanderson.org/research/research-resources/core-facilities/molecular-diagnostics-lab/services/calr-mutation-analysis.html. Accessed March 2017.
(© 2017). ARUP now offers CALR (Calreticulin) Exon 9 Mutation Analysis. ARUP Laboratories. Available online at http://www.aruplab.com/oncology/CALR. Accessed March 2017.
(© 2017). CALR (Calreticulin) Exon 9 Mutation Analysis by PCR ARUP Laboratories. Available online at http://ltd.aruplab.com/tests/pub/2010673. Accessed March 2017.
(March 7, 2107) Genetics Home Reference. What advances are being made in DNA sequencing? Available online at https://ghr.nlm.nih.gov/primer/genomicresearch/sequencing. March 2017.
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667-679.
Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680-692.
Ask a Laboratory Scientist
