Immunophenotyping by Flow Cytometry
- Also Known As:
- Flow Cytometry

This page was fact checked by our expert Medical Review Board for accuracy and objectivity. Read more about our editorial policy and review process.
At a Glance
Why Get Tested?
To help diagnose and classify a leukemia or lymphoma; to help guide treatment; to aid in determining prognosis; to detect and evaluate leukemia or lymphoma cells that remain after treatment or at disease relapse
When To Get Tested?
When you have signs and symptoms that a health care practitioner thinks may be due to leukemia or lymphoma; to help classify the type of leukemia or lymphoma, identify treatment options, and predict the likely course of the disease; to evaluate whether treatment has been effective or detect disease that remains or comes back after treatment (relapse or recurrence)
Sample Required?
A blood sample is obtained by inserting a needle into a vein. A bone marrow sample may be collected from the hip bone by a trained health care practitioner (Bone Marrow Aspiration and Biopsy). Sometimes, a tissue sample, such as from a lymph node, is obtained using a biopsy or fine needle aspiration (FNA) procedure. Body fluid samples are obtained through collection of the fluid in a container or by inserting a needle into the body cavity and aspirating a portion of the fluid with a syringe.
Test Preparation Needed?
None
What is being tested?
Immunophenotyping by flow cytometry is a laboratory method that detects the presence or absence of white blood cell (WBC) markers called antigens. These antigens are protein structures found on or within WBCs. Specific groupings of these antigens are normally present on or within WBCs and are unique to specific cell types and stages of cell maturation. Additionally, specific patterns of antigens are present on abnormal cells seen in leukemias and lymphomas. Flow cytometry immunophenotyping may be useful in helping to diagnose, classify, treat and determine prognosis of these blood cell cancers.
Leukemias and lymphomas are caused by an abnormal white blood cell that begins to divide uncontrollably, making numerous copies of itself (clones). The abnormal cells grow, but they do not fight infections or perform other functions like normal WBCs. They do not die at a normal rate, so they accumulate in the bone marrow, lymph nodes, or other tissues. As the number of abnormal cells increases in the bone marrow, they may crowd out and inhibit the production of normal white blood cells, red blood cells, and platelets, and eventually abnormal cells may also be released into the blood. As the number of abnormal cells increase in a lymph node, the size of the lymph node increases. Sometimes lymphomas also involve the blood and/or bone marrow.
If you have a leukemia or lymphoma, routine tests such as a complete blood count (CBC) and a WBC differential may show an increased number of white blood cells with a predominance of one type. These tests may suggest lymphoma or leukemia, but more information is generally needed to confirm a diagnosis and to identify a specific type of leukemia or lymphoma.
Flow cytometry immunophenotyping may be performed on blood, bone marrow, or other samples to provide this additional information. It can detect normal cells as well as abnormal cells whose pattern of markers are typically seen with specific types of leukemia and lymphoma. The results may also be used to predict how aggressive the cancer will be and/or whether it will respond to certain treatment.
Most of the antigens that flow cytometry immunophenotyping detects are identified by a CD (clusters of differentiation or cluster designation) number. CD numbers represent a naming convention that is based on international consensus. While hundreds of antigens have been identified and have a unique CD number, only a small number of these are routinely used.
Common Questions
View Sources
Sources Used in Current Review
Seiter, K. (2018 July 17, Updated). Acute Lymphoblastic Leukemia (ALL). Medscape Hematology. Available online at https://emedicine.medscape.com/article/207631-overview. Accessed January 2020.
Kanwar, V. et. al. (2019 January 3, Updated). Pediatric Acute Lymphoblastic Leukemia. Medscape Pediatrics: General Medicine. Available online at https://emedicine.medscape.com/article/990113-overview. Accessed January 2020.
(2018 March 12). Acute Lymphoblastic Leukemia. NCCN Clinical Practice Guidelines in Oncology. Available online at https://www.nccn.org/professionals/physician_gls/pdf/all.pdf. Accessed January 2020.
Lamb, A. et. al. (2019 January, Updated).Acute Lymphoblastic Leukemia – ALL. ARUP Consult. Available online at https://arupconsult.com/content/acute-lymphoblastic-leukemia. Accessed January 2020.
(2018 October 17, Revised). Tests for Acute Lymphocytic Leukemia (ALL). American Cancer Society. Available online at https://www.cancer.org/cancer/acute-lymphocytic-leukemia/detection-diagnosis-staging/how-diagnosed.html. Accessed January 2020.
(2016 February 3, Revised). How Is Childhood Leukemia Diagnosed? American Cancer Society. Available online at https://www.cancer.org/cancer/leukemia-in-children/detection-diagnosis-staging/how-diagnosed.html. Accessed January 2020.
(© 2015). Blood Tests. Leukemia & Lymphoma Society. Available online at https://www.lls.org/managing-your-cancer/lab-and-imaging-tests/blood-tests#Immunophenotyping. Accessed January 2020.
Sources Used in Previous Reviews
Craig, F. and Foon, K. (2008 April 15). Flow cytometric immunophenotyping for hematologic neoplasms. Blood Journal v111 (8) [On-line information]. Available online at http://bloodjournal.hematologylibrary.org/content/111/8/3941.full. Accessed April 2011.
Jaffe, E. et. al. (2008 December 1). Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008 December 1; 112(12): 4384–4399. [On-line information]. Available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954680/. Accessed April 2011.
(Updated 2011 March 13). Blood Tests. Leukemia & Lymphoma Society [On-line information]. Available online through http://www.lls.org. Accessed April 2011.
Torpy, J. (2009 January 28). Acute Lymphoblastic Leukemia. JAMA Patient Page V301 (4) [On-line information]. PDF available for download at http://jama.ama-assn.org/content/301/4/452.full.pdf. Accessed April 2011.
Bahler, D. (Updated 2011 February). Lymphoma Phenotyping. ARUP Consult [On-line information]. Available online at http://www.arupconsult.com/Topics/LymphomaPhenotyping.html. Accessed April 2011.
(© 1995–2011). Unit Code 3287: Leukemia/Lymphoma Immunophenotyping by Flow Cytometry. Mayo Clinic, Mayo Medical Laboratory [On-line information]. Available online at http://www.mayomedicallaboratories.com/test-catalog/Overview/3287. Accessed April 2011.
(Reviewed 2010 December). Lymphoid Neoplasms Laboratory Support of Diagnosis and Management Test Guide. Quest Diagnostics [On-line information]. Available online at http://www.questdiagnostics.com/hcp/intguide/jsp/showintguidepage.jsp?fn=TG_Lymphoid_Neoplasms.htm. Accessed April 2011.
Wittwera, C. and Brown, M. (2000). Flow Cytometry: Principles and Clinical Applications in Hematology Clinical Chemistry 46:8(B) 1221–1229 [On-line information]. Available online at http://www.clinchem.org/cgi/content/full/46/8/1221. Accessed April 2011.
Mayo Clinic Staff (2010 November 24). Chronic lymphocytic leukemia. MayoClinic [On-line information]. Available online at http://www.mayoclinic.com/health/chronic-lymphocytic-leukemia/DS00565. Accessed April 2011.
Acute Leukemia. Merck Manual for Healthcare Professionals [On-line information]. Available online at http://www.merckmanuals.com/professional/sec11/ch142/ch142b.html. Accessed April 2011.
Pagana, K. D. & Pagana, T. J. (© 2011). Mosby’s Diagnostic and Laboratory Test Reference 10th Edition: Mosby, Inc., Saint Louis, MO. Pp 244-247.
Wu, A. (© 2006). Tietz Clinical Guide to Laboratory Tests, 4th Edition: Saunders Elsevier, St. Louis, MO. Pp 1633-1711.
Chen, Y. (Updated 2014 March 23). B-cell leukemia/lymphoma panel. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003518.htm. Accessed December 2014.
(© 1995–2014). Leukemia/Lymphoma Immunophenotyping by Flow Cytometry. Mayo Clinic Mayo Medical Laboratories [On-line information]. Available online at http://www.mayomedicallaboratories.com/test-catalog/Overview/3287. Accessed December 2014.
Maecker, H. et. al. (2012 February 17). Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol v12 (3): 191–200. [On-line information]. Available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409649/. Accessed December 2014.
(Reviewed 2013 July 10). Leukemia – Acute Lymphocytic (Adults). American Cancer Society [On-line information]. Available online at http://www.cancer.org/acs/groups/cid/documents/webcontent/003109-pdf.pdf. Accessed December 2014.
(2013 December 11). Understanding Laboratory Tests. National Cancer Institute [On-line information]. Available online at http://www.cancer.gov/cancertopics/factsheet/detection/laboratory-tests. Accessed December 2014.
(Revised 2012). Understanding Lab and Imaging Tests. Leukemia & Lymphoma Society [On-line information]. Available online through http://www.lls.org. Accessed December 2014.
Ask a Laboratory Scientist
